Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
BMC Cancer ; 24(1): 330, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468232

RESUMO

TMEFF1 is a new protein involved in the physiological functions of the central nervous system, and we previously reported TMEFF1 can promote ovarian cancer. ST14 was determined to be involved in the processes of epidermal differentiation, epithelial cell integrity, and vascular endothelial cell migration, etc. The relationship between ST14 and TMEFF1 in the ovary remains unknown. In this study, we detected the expression of ST14 and TMEFF1 in 130 different ovarian cancer tissues through immunohistochemistry. We determined ST14 and TMEFF1 were highly expressed in ovarian cancer, indicating a higher degree of tumor malignancy and a worse prognosis. Tissues significantly expressing ST14 also highly expressed TMEFF1, and the expression of the two proteins was positively correlated. Consistently, immunofluorescence double staining demonstrated the co-localization of ST14 and TMEFF1 in the same region, and immunoprecipitation confirmed the interaction between ST14 and TMEFF1. TMEFF1 expression was also reduced after knocking down ST14 through Western blot. MTT, wound healing and Transwell assays results determined that knockdown of ST14 inhibited proliferation, migration and invasion of ovarian cancer cells in vitro, but the inhibitory effect was restored after adding TMEFF1 exogenous protein. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways analysis showed that ST14 and its related genes were enriched in the processes of epithelial formation, intercellular adhesion, protein localization, and mitosis regulation. We also clarified the kinase, microRNA, and transcription factor target networks and the impact of genetic mutations on prognosis. Overall, high expression of ST14 and TMEFF1 in ovarian cancer predicts higher tumor malignancy and a worse prognosis. ST14 and TMEFF1 co-localize and interact with each other in ovarian cancer. ST14 can regulate TMEFF1 expression to promote proliferation, migration and invasion of ovarian cancer cells. We speculate that the relationship between ST14 and TMEFF1 in ovarian cancer could become a potential target for anti-cancer therapy.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , MicroRNAs/genética , Fatores de Transcrição/genética , Mutação , Prognóstico , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
2.
Biochem Pharmacol ; 214: 115667, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356630

RESUMO

Circular RNAs (circRNAs), a subclass of noncoding RNAs, have been demonstrated to play an essential role in osteosarcoma (OS) development. However, there is still a significant gap in investigating its biological functions and underlying molecular mechanisms, and novel targets of circRNAs have yet to be fully explored. Herein, we found that hsa_circ_0007031 is noticeably raised in OS clinical tissues and cell lines. Hsa_circ_0007031 accelerates OS cell proliferation and migration in vitro and tumor growth and metastasis in vivo and is strongly linked with the stemness of cancer stem cells in OS. Mechanistically, hsa_circ_0007031 shares miRNA response elements with Homeobox B6 (HOXB6), which is identified as a novel pro-tumorigenic gene of OS. Hsa_circ_0007031 competitively binds to miR-196a-5p to prevent miR-196a-5p from lowering the level of HOXB6, which modulates chemokines of cytokine-cytokine receptor interaction signaling pathway and finally promotes OS malignant behavior. In summary, our data unveiled that hsa_circ_0007031/miR-196a-5p/HOXB6 axis-mediated cytokine-cytokine receptor interaction facilitates the progression of OS and maintains the properties of tumor stem cells, which could be a promising therapeutic target for OS.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Genes Homeobox , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Osteossarcoma/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-36793761

RESUMO

Objective: To investigate the effect of garlic extract (GE) on the proliferation and apoptosis of cell lines A549 and H1299 in lung cancer (LC). Methods: A549 and H1299 cells with well-developed logarithmic growth were added with GE at a concentration of 0 µg/ml, 25 µg/ml, 50 µg/M, 75 µg/ml, and 100 µg/ml, respectively. The inhibition of A549 cell proliferation was detected using CCK-8 after cultured for 24 h, 48 h, and 72 h. The apoptosis of A549 cells was analyzed via flow cytometry (FCM) after 24 h of cultivation. In vitro migration of A549 and H1299 cells was determined by cell wound scratch assay after 0 h and 24 h culture. The caspase-3 and caspase-9 protein expression levels in A549 and H1299 cells were evaluated through western blot after 24 h of cultivation. Results: Colony formation and EdU assays revealed that Z-ajoene could inhibit cell viability and cell proliferation in NSCLC cells. After 24 h culture, there was no significant difference in the proliferation rate of A549 and H1299 cells with different GE concentrations (P > 0.05). A remarkable proliferation rate difference emerged between A549 and H1299 cells with different GE concentrations after 48 and 72 hours of cultivation. The proliferation rate of A549 and H1299 cells in the experiment group was significantly lower than that in the control group. With an elevated level of GE concentration, the proliferation rate of A549 and H1299 cells decreased (P < 0.05) while the apoptotic rate increased continuously. Conclusion: GE could exert toxic effects on A549 and H1299 cells, inhibit cell proliferation, promote apoptosis, and attenuate cell migration. Meanwhile, it might induce apoptosis of A549 and H1299 cells through the caspase signal pathway, which is positively correlated with the mass action concentration and is expected to be a new drug for LC treatment.

4.
Oxid Med Cell Longev ; 2023: 1261039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743693

RESUMO

Background: The occurrence and development of ovarian cancer (OV) are significantly influenced by increased levels of oxidative stress (OS) byproducts and the lack of an antioxidant stress repair system. Hence, it is necessary to explore the markers related to OS in OV, which can aid in predicting the prognosis and immunotherapeutic response in patients with OV. Methods: The single-cell RNA-sequencing (scRNA-seq) dataset GSE146026 was retrieved from the Gene Expression Omnibus (GEO) database, and Bulk RNA-seq data were obtained from TCGA and GTEx databases. The Seurat R package and SingleR package were used to analyze scRNA-seq and to identify OS response-related clusters based on ROS markers. The "limma" R package was used to identify the differentially expressed genes (DEGs) between normal and ovarian samples. The risk model was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. The immune cell infiltration, genomic mutation, and drug sensitivity of the model were analyzed using the CIBERSORT algorithm, the "maftools," and the "pRRophetic" R packages, respectively. Results: Based on scRNA-seq data, we identified 12 clusters; OS response-related genes had the strongest specificity for cluster 12. A total of 151 genes were identified from 2928 DEGs to be significantly correlated with OS response. Finally, nine prognostic genes were used to construct the risk score (RS) model. The risk score model was an independent prognostic factor for OV. The gene mutation frequency and tumor immune microenvironment in the high- and low-risk score groups were significantly different. The value of the risk score model in predicting immunotherapeutic outcomes was confirmed. Conclusions: OS response-related RS model could predict the prognosis and immune responses in patients with OV and provide new strategies for cancer treatment.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Sequência de Bases , Biomarcadores , Estresse Oxidativo/genética , RNA-Seq , Biomarcadores Tumorais/genética , Microambiente Tumoral
5.
BMC Cancer ; 22(1): 1338, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36544104

RESUMO

HERPUD1 is an important early marker of endoplasmic reticulum stress (ERS) and is involved in the ubiquitination and degradation of several unfolded proteins. However, its role in tumorigenesis is seldom studied, and its role in ovarian cancer is unclear. Lewis y antigen is a tumor-associated sugar antigen that acts as an 'antenna' on the cell surface to receive signals from both inside and outside the cell. We previously reported that Lewis y can promote ovarian cancer by promoting autophagy and inhibiting apoptosis. In this study, we detect the expression of HERPUD1 and Lewis y antigens in 119 different ovarian cancer tissues, determine their relationship with clinicopathological parameters, analyze the correlation between these two proteins, and explore the related cancer-promoting mechanisms through MTT, flow cytometry, western blotting, and bioinformatics. HERPUD1 is highly expressed in ovarian cancer, especially in the early stage, and the expression of HERPUD1 and Lewis y antigen was positively correlated. After overexpression of Lewis y antigen, the expression level of HERPUD1 increased. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) analysis showed that HERPUD1 and its related genes are enriched in regulating immunity, endoplasmic reticulum stress, ubiquitin-dependent degradation, ERS-induced apoptosis, and other key signaling pathways. We also clarified the HERPUD1 network of kinases, microRNA and transcription factor targets, and the impact of HERPUD1 mutations on prognosis. In addition, HERPUD1 promotes the proliferation of ovarian cancer cells, inhibits apoptosis, affects the cell cycle, promotes the occurrence of autophagy, and inhibits EMT and PI3K/AKT/mTOR and p38MAPK pathways. Overall, HERPUD1, regulated by the expression of tumor-associated protein Lewis y, promotes cell survival in the early stages of tumors, suggesting that HERPUD1 may play an important role in the development of ovarian cancer.


Assuntos
Autofagia , Sobrevivência Celular , Neoplasias Ovarianas , Feminino , Humanos , Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Sobrevivência Celular/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição , Proteínas de Membrana/metabolismo
6.
Comput Math Methods Med ; 2022: 1821233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238488

RESUMO

Osteosarcoma (OS) is the pretty common primary cancer of the bone among the malignancies in adolescents. A single molecular component or a limited number of molecules is insufficient as a predictive biomarker of OS progression. Hence, it is necessary to find novel network biomarkers to improve the prediction and therapeutic effect for OS. Here, we identified 230 DE-miRNAs and 821 DE-mRNAs through two miRNA expression-profiling datasets and three mRNA expression-profiling datasets. We found that hsa-miR-494 is closely linked with the survival of OS patients. In addition, we analyzed GO and KEGG enrichment for targets of hsa-miR-494-5p and hsa-miR-494-3p through R programming. And five mRNAs were predicted as common targets of hsa-miR-494-5p and hsa-miR-494-3p. We further revealed that upregulated TRPS1 was strongly correlated with poor outcomes in OS patients through the survival analysis based on the TARGET database. The qRT-PCR study verified that the expression of hsa-miR-494-5p and hsa-miR-494-3p was declined considerably, while TRPS1 was notably raised in OS cells when compared to the osteoblasts. Thus, we generated a new regulatory subnetwork of key miRNAs and target mRNAs using Cytoscape software. These results indicate that the novel miRNA-mRNA subnetwork composed of hsa-miR-494-5p, hsa-miR-494-3p, and TRPS1 might be a characteristic molecule for assessing the prognostic value of OS patients.


Assuntos
MicroRNAs , Osteossarcoma , Adolescente , Biomarcadores , Biologia Computacional , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/genética , RNA Mensageiro/genética , Proteínas Repressoras/genética
7.
BMC Cancer ; 22(1): 690, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739489

RESUMO

BACKGROUND: Nucleolar and spindle-associated protein 1 (NUSAP1) was shown to be involved in cell cycle regulation in cancer. However, its prognostic value and underlying mechanism in ovarian cancer remain unclear. METHODS: Oncomine, TCGA, CCLE, and UALCAN databases were used to analyze the expression level of NUSAP1 in ovarian cancer. The Kaplan-Meier plotter database was used to evaluate its prognostic value. The results from these analyses were further validated using immunohistochemical assay. The potential molecular mechanism of NUSAP1 in ovarian cancer was assessed with respect to homologous recombination repair, mismatch repair, and immunology using different databases. RESULTS: Database analyses and experimental results demonstrated that NUSAP1 was highly expressed in ovarian cancer, its levels being correlated with the FIGO stage. High NUSAP1 expression was an independent risk factor affecting the prognosis of patients with epithelial ovarian cancer. Moreover, NUSAP1 was associated with cell cycle, DNA replication, homologous recombination, and p53 signaling pathway. A positive correlation was identified between the expression of NUSAP1 and BRCA1/2 in ovarian cancer. In addition, NUSAP1 was associated with the expression of DNA mismatch repair genes and immune cell infiltration. CONCLUSIONS: NUSAP1 may be a valuable prognostic marker, as well as a novel biomarker for evaluating the response to immunotherapy of patients with ovarian cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Associadas aos Microtúbulos , Neoplasias Ovarianas , Feminino , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias Ovarianas/genética , Prognóstico
8.
Pediatr Blood Cancer ; 69(9): e29705, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35404538

RESUMO

BACKGROUND: Hepatoblastoma (HB) is one of the most common cancers in children. Recent studies have shown that the occurrence of nuclear accumulation of ß-catenin reaches 90%-100% because of the anomalous activation of the Wnt pathway in HB patients. Furthermore, emerging studies have shown that concomitant activated forms of YAP and ß-catenin trigger the formation and progression of HB. YAP might play a vital role in ß-catenin-mediated HB development. However, the molecular mechanisms by which YAP/TEAD4 transcription factor regulates CTNNB1 underlying HB pathogenesis are still unclear. PROCEDURE: YAP and CTNNB1 expression and correlation were analyzed by a combination of network enrichment analysis and gene set enrichment analysis of the public microarray datasets (GSE131329 and GSE81928). The protein levels of YAP and ß-catenin were further validated by Western blotting in paired patients' samples. The direct interplay between YAP/TEAD4 and the promoter region of CTNNB1 was proven by the combination of dual-luciferase report assay and chromatin immunoprecipitation assay. RESULTS: YAP-conserved signature and WNT signaling pathway were significantly enriched in HB patients, with upregulated expression of YAP and ß-catenin compared to non-HB patients. Further functional assays demonstrated that YAP/TEAD4 transcription factor complex could bind to the CTNNB1 promoter region directly to promote ß-catenin expression and cell proliferation. Targeting the YAP/TEAD4 complex with a specific small-molecule compound markedly suppressed HepaG2 cell proliferation. CONCLUSIONS: As the upstream transcription factor of CTNNB1, YAP/TEAD4 is a promising target for the treatment of HB patients with high levels of YAP and ß-catenin.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Proteínas de Sinalização YAP , beta Catenina , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hepatoblastoma/patologia , Humanos , Neoplasias Hepáticas/patologia , Proteínas Musculares , Patologia Molecular , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/genética , beta Catenina/genética , beta Catenina/metabolismo
9.
Int Immunopharmacol ; 107: 108726, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35338959

RESUMO

TMEFF1 is a newly discovered protein involved in the physiological functions of the central nervous system, embryonic development, and other biological processes. Our previous study revealed that TMEFF1 acts as a tumor-promoting gene in ovarian cancer. AHNAK, as a giant scaffolding protein, plays a role in the formation of the blood-brain barrier, cell architecture and the regulation of cardiac calcium channels. However, its role in ovarian cancer remains poorly researched. In this study, we detected the expression of AHNAK and TMEFF1 in 148 different ovarian cancer tissues, determined their relationship with pathological parameters and prognosis, clarified the interaction between the two proteins, and explored the related cancer-promoting mechanisms through immunohistochemistry, immunoprecipitation, immunofluorescence double staining, western blotting, and bioinformatics. The high expression of ANHAK and TMEFF1 in ovarian cancer indicated a higher degree of tumor malignancy and a worse prognosis. Furthermore, the expression of TMEFF1 and AHNAK was significantly positively correlated. The results also showed that AHNAK and TMEFF1 co-localized and interacted with each other in ovarian cancer tissues and cells. And knockdown of AHNAK promoted proliferation, migration and invasion of ovarian cancer cells in vitro. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that AHNAK and related genes were enriched during mitosis regulation, cytoskeleton formation, gene epigenetics, etc., whereas TMEFF1 and related genes are enriched during immune regulation and other processes. We also clarified the network of kinases, microRNA, and transcription factor targets, and the impact of genetic mutations on prognosis. Notably, AHNAK was regulated by the expression of TMEFF1 and can activate the MAPK pathways. Overall, high expression of AHNAK and TMEFF1 in ovarian cancer cells indicated a higher degree of tumor malignancy and a worse prognosis. Therefore, the interaction between AHNAK and TMEFF1 may become a potential anti-tumor target for ovarian cancer treatment.


Assuntos
Neoplasias Ovarianas , Biologia Computacional , Feminino , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Prognóstico
10.
Genome Med ; 14(1): 20, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35197093

RESUMO

BACKGROUND: Immune checkpoint inhibitor (ICI) therapy has revolutionized the treatment of many cancers. However, the limited population that benefits from ICI therapy makes it necessary to screen predictive biomarkers for stratifying patients. Currently, many biomarkers, such as tumor mutational burden (TMB), have been used in the clinic as indicative biomarkers. However, some high-TMB patients with mutations in genes that are closely related to immunotherapeutic resistance are not sensitive to ICI therapy. Thus, there is a need to move beyond TMB and identify specific genetic determinants of the response to ICI therapy. In this study, we established a comprehensive mutation-based gene set across different tumor types to predict the efficacy of ICI therapy. METHODS: We constructed and validated a mutational signature to predict the prognosis of patients treated with ICI therapy. Then, the underlying immune response landscapes of different subtypes were investigated with multidimensional data. RESULTS: This study included genomic and clinical data for 12,647 patients. An eleven-gene mutation-based gene set was generated to divide patients into a high-risk group and a low-risk group in a training cohort (1572 patients with 9 types of cancers who were treated with ICI therapy). Validation was performed in a validation cohort (932 patients with 5 types of cancers who were treated with ICI therapy). Mutations in these 11 genes were associated with a better response to ICI therapy. In addition, the mutation-based gene set was demonstrated to be an independent prognostic factor after ICI therapy. We further explored the role of the immune context in determining the benefits of immunotherapy in 10,143 patients with 33 types of cancers and found distinct immune landscapes for the high- and low-risk groups. CONCLUSIONS: The mutation-based gene set developed in this study can be used to reliably predict survival benefit across cancers in patients receiving ICI therapy. The close interplay between the extrinsic and intrinsic immune landscapes in the identified patient subgroups and the subgroups' differing responses to ICI therapy could guide immunotherapy treatment decisions for cancer patients.


Assuntos
Imunoterapia , Neoplasias , Biomarcadores Tumorais/genética , Humanos , Imunidade , Imunoterapia/métodos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética
11.
Mol Ther Nucleic Acids ; 27: 577-592, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35036067

RESUMO

Osteosarcoma (OS) is characterized by rapid growth and early metastasis. However, its mechanism remains unclear. N6-methyladenosine (m6A) modification and its regulatory factors play essential roles in most cancers, including OS. In this study, we screened out 21 m6A modifiers using the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database, followed by the identification of the critical m6A methylation modifiers. The results revealed that the expression levels of three m6A methylation regulators, namely RBM15, METTL3, and LRPPRC, were associated with the low survival rate of patients with OS. We further studied the independent prognostic factors by performing univariate and multivariate Cox analyses and found that metastasis was an independent prognostic factor for patients with OS. Furthermore, we found for the first time that RBM15 was specific for metastatic OS rather than non-metastatic OS. Moreover, the significant overexpression of RBM15 was validated in metastatic OS cell lines and in actual human clinical specimens. We also revealed that RBM15 promoted the invasion, migration, and metastasis of OS cells through loss-functional and gain-functional experiments and an animal metastatic model. In conclusion, RBM15 has a high correlation with OS metastasis formation and the decreased survival rate of patients with OS, and this may serve as a useful biomarker for predicting metastasis and prognosis of patients with OS.

12.
J Nanobiotechnology ; 20(1): 38, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057811

RESUMO

Osteoarthritis (OA) is a degenerative illness that greatly impacts the life quality of patients. Currently, the therapeutic approaches for OA are very limited in clinical. The extracellular vesicles (EVs) derived from different mesenchymal stem cells displayed a prominent therapeutic effect on OA. But most EVs have limited resources and the risks of host rejection, immunological response, and etc. Human umbilical cord mesenchymal stem cells (hUCMSCs) hold the advantages of easy availability, minimal immune rejection, and excellent immunomodulatory effects, although hUCMSCs-EVs have seldom been applied in OA. Herein, we investigated the potential immunomodulatory and anti-inflammatory effects of hUCMSCs-EVs on the treatment of OA. In our results, the treatment of hUCMSCs-EVs promoted the polarization of M2-type macrophages and the expression of anti-inflammation-related cytokines (IL-10). Notably, the supernate of M2 macrophages induced by hUCMSCs-EVs inhibited the level of inflammation-associated factors in OA chondrocytes caused by IL-1ß. Further, injection of hUCMSCs-EVs in the articular lumen ameliorated progression of OA and exerted chondroprotective potential based on the OA joint model created by the surgical transection of the anterior cruciate ligament (ACLT). In addition, we found five highly enriched miRNAs in hUCMSCs-EVs, including has-miR-122-5p, has-miR-148a-3p, has-miR-486-5p, has-miR-let-7a-5p, and has-miR-100-5p by High-throughput sequencing of miRNAs, with targeted genes mainly enriched in the PI3K-Akt signaling pathway. Furthermore, we also detected the protein abundance of hUCMSCs-EVs using liquidation chromatography with tandem quadrupole mass spectrometry (LC-MS/MS) analysis. Thus, our study indicates that hUCMSCs-EVs can alleviate cartilage degradation during the OA progression, mechanically may through delivering key proteins and modulating the PI3K-Akt signaling pathway mediated by miRNAs to promote polarization of M2 macrophage, exhibiting potent immunomodulatory potential. The current findings suggest that hUCMSCs-EVs might serve as a new reagent for the therapy of OA.


Assuntos
Anti-Inflamatórios , Vesículas Extracelulares/química , Células-Tronco Mesenquimais/citologia , Osteoartrite/metabolismo , Cordão Umbilical/citologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Extratos Celulares/química , Extratos Celulares/farmacologia , Humanos , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
14.
Front Oncol ; 11: 713026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631538

RESUMO

The impact of Actin beta-like 2 (ACTBL2), a novel described actin isoform, on epithelial ovarian cancer (EOC) biology has not been investigated so far. In this study, we analyzed the prognostic and functional significance of ACTBL2 and its regulatory element Nuclear factor of activated T-cells 5 (NFAT5). The expression of ACTBL2 and NFAT5 was examined in tissue microarrays of 156 ovarian cancer patients by immunohistochemistry. Aiming to assess the molecular impact of ACTBL2 on cellular characteristics, functional assays were executed in vitro upon siRNA knockdown of ACTBL2 and NFAT5. ACTBL2 expression was identified as an independent negative prognostic factor for overall survival of EOC patients. EOC cell lines showed a significantly increased mRNA and protein level of ACTBL2 compared to the benign control. In vitro analyses upon siRNA knockdown of ACTBL2 displayed a significantly reduced cellular viability, proliferation and migration. siRNA knockdown of NFAT5 proved a significant molecular interplay by inducing a downregulation of ACTBL2 with a thus resulting concordant alteration in cellular functions, predominantly reflected in a decreased migratory potential of EOC cells. Our results provide significant evidence on the negative prognostic impact of ACTBL2 in EOC, suggesting its crucial importance in ovarian carcinogenesis by modulating cellular motility and proliferation.

15.
Mol Ther Oncolytics ; 22: 294-306, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34553020

RESUMO

Uterine corpus endometrial carcinoma locally infiltrates numerous immune cells and other tumor immune microenvironment components. These cells are involved in malignant tumor growth and proliferation and the process of resistance toward immunotherapies. Here, we aimed to develop a tumor immune microenvironment-related prognostic signature for high-risk grade III endometrial carcinoma based on The Cancer Genome Atlas. The signature was systematically correlated with immune infiltration characteristics of the tumor microenvironment. The seven-gene Riskscore signature was robust and performed well in training, testing, and Gene Expression Omnibus-independent cohorts. A nomogram comprising the gene signature accurately predicted patient prognosis, with our model performing better than other endometrial cancer-related signatures. Analysis of the IMvigor210 immunotherapy cohort revealed that subgroups with a low Riskscore had a better prognosis than subgroups with a high Riskscore. Subgroups with a low Riskscore exhibited immune cell infiltration and inflammatory profiles, whereas subgroups with a high Riskscore experienced progressive disease. The receiver operating characteristic curve indicated that risk score, neoantigen, and tumor mutation burden models together accurately predicted treatment response. Taken together, we developed a tumor microenvironment-based seven-gene prognostic stratification system to predict the prognosis of patients with high-risk endometrial cancer and guide more effective immunotherapy strategies.

16.
Cancer Cell Int ; 21(1): 516, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565373

RESUMO

BACKGROUND: The WNT gene family plays an important role in the occurrence and development of malignant tumors, but its involvement has not been systematically analyzed in uterine corpus endometrial carcinoma (UCEC). This study aimed to evaluate the prognostic value of the WNT gene family in UCEC. METHODS: Pan-cancer transcriptome data of the UCSC Xena database and Genotype-Tissue Expression (GTEx) normal tissue data were downloaded to analyze the expression and prognosis of 19 WNT family genes in UCEC. A cohort from The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) was used to analyze the expression of the WNT gene family in different immune subtypes and clinical subgroups. The STRING database was used to analyze the interaction of the WNT gene family and its biological function. Univariate Cox regression analysis and Lasso cox analysis were used to identify the genes associated with significant prognosis and to construct multi signature prognosis model. An immunohistochemical assay was used to verify the predictive ability of the model. Risk score and the related clinical features were used to construct a nomogram. RESULTS: The expression levels of WNT2, WNT3, WNT3A, WNT5A, WNT7A, and WNT10A were significantly different among different immune subtypes and correlated with TP53 mutation. According to the WNT family genes related to the prognosis of UCEC, UCEC was classified into two subtypes (C1, C2). The prognosis of subtype C1 was significantly better than that of subtype C2. A 2-gene signature (WNT2 and WNT10A) was constructed and the two significantly prognostic groups can be divided based on median Risk score. These results were verified using real-world data, and the nomogram constructed using clinical features and Risk score had good prognostic ability. CONCLUSIONS: The 2-gene signature including WNT2 and WNT10A can be used to predict the prognosis of patients with UCEC, which is important for clinical decision-making and individualized therapy for patients with UCEC.

17.
J Cancer ; 12(19): 5772-5788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475991

RESUMO

Background: Although tomoregulin-1 (TMEFF1) is involved in embryonic development and central nervous system regulation and is a cancer suppressor gene in brain cancers, its role in endometrial carcinoma remains unclear. Methods: The expression and prognostic value of TMEFF1 were analyzed by bioinformatics methods and immunohistochemistry. An endometrial carcinoma cell line with low expression of TMEFF1 was constructed. Scratch and Transwell assays were used to determine the effect of TMEFF1 on cell invasion and migration. Changes in key proteins in the MAPK and PI3K/AKT signaling pathways and in epithelial-mesenchymal transition (EMT)-related proteins were analyzed using western blot. Chromatin immunoprecipitation assay (ChIP) was performed to identify whether the TMEFF1 promoter region binds to the transcription factor p53. Results: TMEFF1 was significantly upregulated in endometrial carcinoma, was closely associated with FIGO stage (P=0.021) and lymph node metastasis (P=0.029), and was an independent risk factor for prognosis (P=0.044). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that TMEFF1 and its related genes are involved in the cell cycle, regulation of mitosis, epigenetics, neural development, cell biological signal transduction and some key signal pathways. We also identified kinases, microRNAs and a transcription factor network related to TMEFF1 and the effect of TMEFF1 mutation on prognosis. In vitro knockdown of TMEFF1 significantly inhibited cell invasion and migration. Knockdown of TMEFF1 inhibited Epithelial-mesenchymal transition (EMT) and activation of the MAPK and PI3K/AKT pathways. However, the transcription factor p53 was not found to regulate the TMEFF1 gene. Conclusion: TMEFF1 plays an important role in endometrial carcinoma and may thus be a potential anticancer therapeutic target for endometrial carcinoma.

18.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445181

RESUMO

Trace amine-associated receptor 1 (TAAR1) is a Gαs- protein coupled receptor that plays an important role in the regulation of the immune system and neurotransmission in the CNS. In ovarian cancer cell lines, stimulation of TAAR1 via 3-iodothyronamine (T1AM) reduces cell viability and induces cell death and DNA damage. Aim of this study was to evaluate the prognostic value of TAAR1 on overall survival of ovarian carcinoma patients and the correlation of TAAR1 expression with clinical parameters. Ovarian cancer tissue of n = 156 patients who were diagnosed with epithelial ovarian cancer (serous, n = 110 (high-grade, n = 80; low-grade, n = 24; unknown, n = 6); clear cell, n = 12; endometrioid, n = 21; mucinous, n = 13), and who underwent surgery at the Department of Obstetrics and Gynecology, University Hospital of the Ludwig-Maximilians University Munich, Germany between 1990 and 2002, were analyzed. The tissue was stained immunohistochemically with anti-TAAR1 and evaluated with the semiquantitative immunoreactive score (IRS). TAAR1 expression was correlated with grading, FIGO and TNM-classification, and analyzed via the Spearman's rank correlation coefficient. Further statistical analysis was obtained using nonparametric Kruskal-Wallis rank-sum test and Mann-Whitney-U-test. This study shows that high TAAR1 expression is a positive prognosticator for overall survival in ovarian cancer patients and is significantly enhanced in low-grade serous carcinomas compared to high-grade serous carcinomas. The influence of TAAR1 as a positive prognosticator on overall survival indicates a potential prognostic relevance of signal transduction of thyroid hormone derivatives in epithelial ovarian cancer. Further studies are required to evaluate TAAR1 and its role in the development of ovarian cancer.


Assuntos
Carcinoma Epitelial do Ovário/patologia , Neoplasias Ovarianas/patologia , Receptores Acoplados a Proteínas G/análise , Idoso , Carcinoma Epitelial do Ovário/diagnóstico , Carcinoma Epitelial do Ovário/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Prognóstico , Receptores Acoplados a Proteínas G/metabolismo , Tironinas/metabolismo
19.
BMC Med ; 19(1): 154, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34284787

RESUMO

BACKGROUND: Immune checkpoint inhibitor (ICI) therapy elicits durable antitumor responses in patients with many types of cancer. Genomic mutations may be used to predict the clinical benefits of ICI therapy. NOTCH homolog-4 (NOTCH4) is frequently mutated in several cancer types, but its role in immunotherapy is still unclear. Our study is the first to study the association between NOTCH4 mutation and the response to ICI therapy. METHODS: We tested the predictive value of NOTCH4 mutation in the discovery cohort, which included non-small cell lung cancer, melanoma, head and neck squamous cell carcinoma, esophagogastric cancer, and bladder cancer patients, and validated it in the validation cohort, which included non-small cell lung cancer, melanoma, renal cell carcinoma, colorectal cancer, esophagogastric cancer, glioma, bladder cancer, head and neck cancer, cancer of unknown primary, and breast cancer patients. Then, the relationships between NOTCH4 mutation and intrinsic and extrinsic immune response mechanisms were studied with multiomics data. RESULTS: We collected an ICI-treated cohort (n = 662) and found that patients with NOTCH4 mutation had better clinical benefits in terms of objective response rate (ORR: 42.9% vs 25.9%, P = 0.007), durable clinical benefit (DCB: 54.0% vs 38.1%, P = 0.021), progression-free survival (PFS, hazard ratio [HR] = 0.558, P < 0.001), and overall survival (OS, HR = 0.568, P = 0.006). In addition, we validated the prognostic value of NOTCH4 mutation in an independent ICI-treated cohort (n = 1423). Based on multiomics data, we found that NOTCH4 mutation is significantly associated with enhanced immunogenicity, including a high tumor mutational burden, the expression of costimulatory molecules, and activation of the antigen-processing machinery, and NOTCH4 mutation positively correlates activated antitumor immunity, including infiltration of diverse immune cells and various immune marker sets. CONCLUSIONS: Our findings indicated that NOTCH4 mutation serves as a novel biomarker correlated with a better response to ICI therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Esofágicas , Neoplasias Pulmonares , Neoplasias Gástricas , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Receptor Notch4
20.
Front Oncol ; 11: 682461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277429

RESUMO

Reprogramming of energy metabolism is a key hallmark of cancer, which provides a new research perspective for exploring the development of cancer. However, the most critical target of anti-glycolytic therapy for ovarian cancer remains unclear. Therefore, in the present study, Oncomine, GEPIA, and HPA databases, combined with clinical specimens of different histological types of ovarian cancer were used to comprehensively evaluate the expression levels of glycolysis-related metabolite transporters and enzymes in ovarian cancer. We selected phosphoglycerate kinase 1 (PGK1), which showed the greatest prognostic value in the Kaplan-Meier Plotter database, for subsequent validation. Immunochemistry assays confirmed that PGK1 was highly expressed in ovarian cancer. The PGK1 expression level was an independent risk factor for the survival and prognosis of patients with ovarian cancer. Functional analysis showed that the PGK1 expression level was positively correlated with the infiltration of neutrophils. Cell experiments confirmed that inhibiting PGK1 expression in ovarian cancer cells could reduce the epithelial-mesenchymal transition (EMT) process, resulting in loss of cell migration and invasion ability. The small molecule NG52 dose-dependently inhibited the proliferation of ovarian cancer cells. In addition, NG52 reduced the EMT process and reversed the Warburg effect by inhibiting PGK1 activity. Therefore, PGK1 is an attractive molecular target for anti-glycolytic therapy of ovarian cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...